Mark scheme – Lattice Enthalpy

Qı	Questio n		Answer/Indicative content	Marks	Guidance
1		· 	$Mg^{2+}(g) + 2Br(g) + 2e^{-} \checkmark$ $Mg(s) + Br_2(I) \checkmark$	2 (AO 1.2× 2)	State symbols required. CARE : Liquid state symbol for Br ₂ <u>Examiner's Comments</u> Many candidates got the second ionisation energy equation. Very few candidates got the correct state symbol on the lower line for Br ₂ , with solid being the common response.
		ï	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -346.5 award 2 marks $2\Delta H$ hyd = $-525 - 186 - (2 \times 112) - 148 - 736 - 1450 + (2 \times -325) + 1926$ OR -525 - 186 - 224 - 148 - 736 - 1450 + 650 + 1926 OR $= -693 \checkmark$ ΔH hyd = -346.5 (kJ mol ⁻¹) \checkmark	2 (AO 2.2×2)	 ALLOW -347 (kJ mol⁻¹) for 2 marks. ALLOW for 1 mark ONE error with sign OR use of 2: -693 (not divided by 2 at the end) 346.5 (wrong sign on answer) Common errors for 1 mark -2272.5 (-1926 instead of 1926) -1386 (2 x -693 instead of -693) -996.5 (-650 instead of 650) -509 (2 x 325 not used) -290.5 (2 x 112 not used) -198.5 (148 instead of -148) -160.5 (186 instead of -148) -160.5 (186 instead of -224) 178.5 (525 instead of -525) 389.5 (736 instead of -736) 1103.5 (1450 instead of -1450) For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors e.g453 (2 × 325 not used AND 2 x 112 not used)
		iii	Equation: $Mg^{2+}(g) + 2Br(g) \rightarrow MgBr_2(s) \checkmark$ CHECK THE ANSWER ON ANSWER LINE If answer = -2433 award 2 marks	3 (AO 1.2)	State symbols required For other answers, check for a single transcription error or calculation error which could merit 1 mark
			Lattice enthalpy = $\Delta_{hy}H(Mg^{2+}) + 2 \times \Delta_{hy}H(Br^{-}) - \Delta_{sol}H(MgBr_2)$ OR -1926 + (2 x -346.5) - (-186)	(AO 2.2 x 2)	DO NOT ALLOW any answer which involves two errors

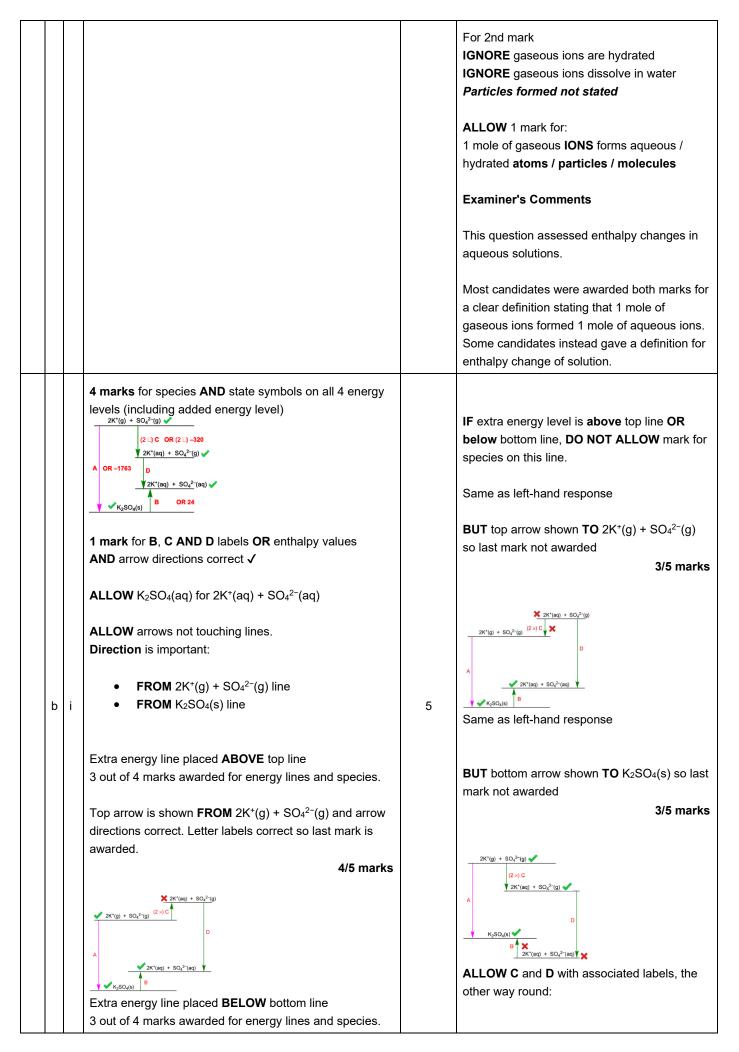
			OR $\Delta_i H (MgBr_2) - 2\Delta_{ai} H (Br) - \Delta_{ai} H (Mg)$ $- 1st IE (Mg) - 2nd IE (Mg) - 2\Delta_{ea} H (Br) OR$ $-525 - (2 \times 112) - 148 - 736 - 1450 - (2 \times -325) \checkmark$ Lattice enthalpy = -2433 kJ mol ⁻¹ \checkmark		ALLOW ECF from incorrect answer to (ii) Examiner's Comments This Born Haber cycle combined the traditional cycle with the enthalpy solution/hydration cycle. Many candidates were successful in calculating the values from the information given and showed full working to complete the calculation. The commonest errors were not doubling the atomisation and electron affinity values (112 and 325) and not dividing the enthalpy of hydration by two. Some candidates did not show working or just listed numbers. Candidates should remember to provide written indications of what it is they are working out – presenting the calculations without any annotations can make it harder for error carried forward marks to be given if there is an error in their calculation. Some candidates did not produce an equation for (iii) and wrote the lattice enthalpy sum in its place.
			Total	7	
2	а	i	$2K'(g) + O^{2}(g) \checkmark$ $2K'(g) + O'(g) + e^{-} \checkmark$ $2K(g) + O(g) \checkmark$ $2K'(g) + O'(g) + e^{-} \checkmark$	4 (AO 1.2 ×4)	Mark each marking point independently Correct species AND state symbols required for each mark For e ⁻ , ALLOW e For e ⁻ only, IGNORE any state symbols added Examiner's Comments Some candidates wrote illegible state symbols where (g) and (s) were impossible to tell apart. Also, many candidates choose to write state symbols as a very small sub-script e.g. $2K_{(s)} + \frac{1}{2}O_{2(g)}$. The convention is to use lower case letters of normal size e.g. $2K(s) + \frac{1}{2}O_{2}(g)$ Exemplar 1

				In this exemplar it was impossible to tell if K had (s) or (g) as a state symbol. Consequently, no marks could be given.
				IF there is an alternative answer, check to see if there is any ECF credit possible using working below
				See list below for marking of answers from common errors
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -2277 (kJ mol ⁻¹) award 2 marks $-363 - (2 \times +89 +249 + 2 \times 419 - 141 + 790) \checkmark$ -363 - 1914 = -2277 \checkmark (kJ mol ⁻¹)	2 (AO 2.2 ×2)	ALLOW for 1 mark ONE mistake with sign OR use of 2 ×: +2277 (wrong sign) -601 (2 × -419 instead of 2 × +419) -697 (-790 instead of +790) -1551 (+363 instead of -363) -1858 (2 × +419 not used for K) -1921 (2 × -89 instead of 2 × +89) -2152.5 or -2153 (+249 \div 2) -2188 (2 × +89 not used for K) -2280 (rounded to 3SF) -2559 (+141 instead of -141) For other answers, check for a single transcription error or calculator error which could merit 1 mark Examiner's Comments
				Most candidates scored both marks. Candidates tended to forget the mole ratio of K meant its values should be multiplied by 2 in two places during this calculation.
		<i>For sodium</i> atomic radius smaller OR fewer shells √		ALLOW 'Na/sodium is smaller' IGNORE smaller radius / fewer shells / less shielding if applied to ions but DO NOT ALLOW responses which refer to ions losing electrons DO NOT ALLOW molecules
b	i		2 (AO 1.1 ×2)	ALLOW energy levels for shells IGNORE fewer orbitals OR fewer sub–shells ALLOW less (electron) shielding OR electron repulsion between shells IGNORE just 'shielding'
		nuclear attraction increases OR (outer) electron(s) experience more attraction √		ALLOW more/stronger/bigger nuclear attraction etc IGNORE 'pull' for attraction IGNORE electrons more tightly held IGNORE 'nuclear charge' for 'nuclear attraction'

				IGNORE more energy (in question) ALLOW reverse argument for potassium throughout <u>Examiner's Comments</u> Candidates coped well with this question which was based on the AS part of the specification. Some candidates gave vague and unnecessarily long responses to this question. comparison of IONS is essential ALLOW Na ⁺ has a larger charge density
	ï	Comparison of size of cations For sodium ions ionic radius of sodium / Na* is smaller ✓ Comparison of attraction of cation and anion Na* has stronger attraction to O ²⁻ ✓	2 (AO 1.2 ×2)	IGNORE 'Na has smaller atomic radius' but DO NOT ALLOW contradictory sentences eg 'Na+ ions have smaller atomic radius' IGNORE pull for attraction ALLOW 'sodium ion' and 'oxygen ion' IGNORE just 'oxygen' or just 'O' for oxygen ion IGNORE just 'oxygen' or just 'O' for oxygen ion ALLOW stronger attraction between oppositely charged ions Examiner's Comments Many candidates did not achieve full marks, often through ambiguous statements. A typical example is shown in the exemplar below. Exemplar 4 The failers Less energy to farm May candidates 'us solium oxide as apposed to how. Exemplar 4 The exemplar here uses the vague term 'due its smaller ionic size'. It is unclear which of the ions the candidate is referring to (or if they're assuming that the metal oxide entity is an ion) and so they could not be given marks Also, it is oxygen ions that 'bond' – the reference to oxygen bonding in the response is not specific enough.
		Total	10	

			r	
				Indicative scientific points may include: 1. Processing experimental data Energy change from mcΔT • Energy in J OR kJ
				Using 50.70 g, 50.0 g = 50.70 × 4.18 × 13.5 = 2861 (J) OR 2.861 (kJ) 3SF or more (2.861001 unrounded)
		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.		OR 50.0 × 4.18 × 13.5 = 2821.5 (J) OR 2.8215 (kJ)
		Level 3 (5–6 marks) Calculates CORRECT enthalpy change with correct –		
		signs for $\Delta_{sol}H$ (CuSO ⁴ (s)) for reaction 5.2		Amount in mol of CuSO₄
		AND Δ_r H, for reaction 5.1.		• $n(\text{CuSO}_4) = \frac{7.98}{159.6} = 0.0500 \text{ (mol)}$
		There is a well-developed line of reasoning which is clear and logically structured.		
		The information presented is relevant and substantiated.		2. \pm value of Δ_{sol} H(CuSO ₄ (s)) for reaction 5.2
		Level 2 (3–4 marks)		
		Calculates a value of $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2	6	0.001
		from the:	AO3.1x	From $m = 50.70 \text{ g} = \pm \frac{2.861}{0.0500} = \pm 57.22$
3	i	Energy change	4	(kJ mol ⁻¹)
		AND Amount in mol of CuSO₄.	AO3.2x	
		There is a line of reasoning presented with some	2	(–57.22002 unrounded)
		structure.		
		The information presented is relevant and supported by some evidence.		From $m = 50.0 \text{ g} = \pm \frac{2.8215}{0.0500} = \pm 56.43$
		Level 1 (1–2 marks)		(kJ mol⁻¹)
		Processes experimental data to obtain the: Energy		
		change from <i>mc</i> ∆T		
		OR		3. CORRECT enthalpy changes for
		Amount in mol of CuSO4.		reactions 5.2 and 5.1 with signs (using 50.70 g ONLY)
		There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		Reaction 5.2 = -57.22 (kJ mol ⁻¹)
		0 marks – No response or no response worthy of credit		3SF or more with correct – sign Reaction 5.1
				$\Delta_{\rm r} H = \Delta_{\rm sol} H({\rm CuSO}_4({\rm s})) -$
				$\Delta_{sol}H(CuSO_{4}\cdot 5H_{2}O(s))$
				= -57.22 - 8.43 = -65.65 (kJ mol ⁻¹)
				3SF or more with correct – sign
				NOTE: A clear and logically structured
				response would include an energy cycle
				ALLOW omission of trailing zeroes
				ALLOW minor slips

	Examiner's Comments
	This question was assessed by level of response (LoR). Candidates were required to process raw experimental results to determine one enthalpy change, and then to determine a second enthalpy change by constructing and using an energy cycle. Levels were determined by the accuracy of the candidates' processing, calculations and use of the energy cycle. This question discriminated extremely well.
	Level 3 candidates used the mass of solution as 50.7 g with $mc\Delta T$ to obtain an energy change of 2861 J. They then divided this value by the moles of CuSO ₄ that reacted (0.05 mol) to obtain the enthalpy change of -57.22 kJ mol ⁻¹ . Finally, they constructed an energy cycle which they then used to obtain the second enthalpy change of -65.65 kJ mol ⁻¹ .
	Level 2 candidates determined the first enthalpy change but may have used the approximate mass of 50 g for the mass of solution from the experimental method. Their energy cycle was often incorrect or absent, with the second enthalpy change calculated incorrectly.
	Level 1 candidates often calculated the initial energy change using $mc\Delta T$ but made little further correct progress. A significant number of lower ability candidates used the solid mass of copper sulfate in their calculation.
	Overall, mathematical skills were displayed well but some basic errors were made, particularly with subtractions. This may have been the result of mis-keying values into a calculator and believing the answer displayed. An example was the mass of the solution (74.13 - 23.43) being seen as 49.7 rather than 50.7.
	A significant number of candidates added or subtracted the mass of copper sulfate from 50.7 or 50 for their value of <i>m</i> in $mc\Delta T$, using for example 57.98 and 42.72. This limited the level that they could reach.
	Exemplar 4 is an excellent response from a Level 3 candidate. All stages can be clearly followed, the initial energy change using $mc\Delta T$, the first enthalpy change using the


				energy change with the moles of copper sulfate, and the second enthalpy change including a clear energy cycle. Numbers are clearly shown and unrounded until the final values. This is an excellent response. Exemplar 4 $q = mc\Delta T$ $q = 50.7 \times 4.18 \times 13.5 = 2861.001.7$ = 2.861001 kT $n(\omega l_{04}) = 7.99$ = 0.05 159.6 Δ_{14} H $(Cul0_{4}) = -2.861001 - 57.22002$ $0.05 = -57.22 kT_{A0}$ $= -57.22 kT_{A0}$ Δ_{14} B $(Cul0_{4}) = -2.861001 - 57.22002$ $0.05 = -57.22 kT_{A0}$ Δ_{15} B $(\Delta_{14}) = -57.22002 - 8.43$ Δ_{14} (rtackin 5.1) = $-57.22002 - 8.43$ $= -55.65002 kT_{A0}$
	ii	Temperature change = $0.2 \times \frac{100}{20}$ =1(.0)°C \checkmark	1 AO 2.8	IGNORE direction of temperature change Working NOT required Examiner's Comments Just over half the candidates obtained the correct temperature change of 1°C. A common error was a temperature change of 0.5°C, the result of not considering that two temperature readings are made when calculating a temperature change.
4	i	Total (enthalpy change when)√ 1 mole of gaseous ions react√ OR 1 mole of hydrated/aqueous ions are formed √ gaseous ions dissolve in water OR gaseous ions form aqueous/hydrated ions √	2	IGNORE 'energy released' OR 'energy required' Examiner's Comments Most candidates were able to state that one mole of gaseous ions was dissolved into water. Common errors seen included candidates referring to the dissolving of one mole of substance (i.e. the enthalpy change of solution); the use of the generic term 'solvent' rather than water; and dissolving of gaseous ions into one mole of water.
	ii	$Ca^{2+}(g) + 2F^{-}(g) \qquad \checkmark \qquad $	4	Correct species AND state symbols required for each mark. (mark independently) On 2nd line, ALLOW Ca ²⁺ (g) + 2F ⁻ (aq) (i.e. F ⁻ hydrated before Ca ²⁺)

		On 3rd line, ALLOW CaF ₂ (aq)
		DO NOT ALLOW when first seen but ALLOW ECF for ' 2' missing and for use of the following ions $F/^{-}$ $F2^{\checkmark}$ $Ca^{+/3+}$
		Examiner's Comments
		Most candidates were able to score some marks on this question with more able candidates scoring all 4 marks. Common errors included the omission of state symbols and the use of only one F–(g) ion (often despite a correct formula of CaF2 being seen on the bottom line).
		For some reason, many candidates write their lower case 's' in an identical way to their lower case 'g'. This means the examiner cannot distinguish between these state symbols on such scripts. Centres may wish to stress this point to prevent candidates losing marks unnecessarily.
		IF alternative answer, check to see if there is any ECF credit possible using working below.
		'−' sign is needed.
		COMMON ERRORS for 1 mark:
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -504 (kJ mol ⁻¹) award 2 marks IF answer = -1008 (kJ mol ⁻¹) award 1 mark $2 \times \Delta_{hyd} H(F^-)$ = [-2630 + 13] - (-1609) OR -2617 + 1609 OR -1008(kJ mol ⁻¹) \checkmark $\Delta_{nyd} H(F^-) = \frac{-1008}{2} = -504 \checkmark (kJ mol^{-1})$	2	 (+)2694: signs all reversed -2113: sign wrong for -1609 -2126: sign wrong for 2630 -517: sign wrong for 13 +504: sign wrong IF ALL 3 relevant values from the information at the start of Q16a(iii) have NOT been used, award zero marks unless one number has a transcription error, where 1 mark can be awarded ECF Examiner's Comments Most candidates were able to do this relatively straightforward calculation by rearranging the values of the enthalpy changes associated with the energy cycle diagram. However, a significant number forgot to divide –1008 by 2 to score full marks.

	i v	Correct comparison of Δ_{hyd} linked to sizes $\Delta_{hyd}H(\Gamma^{-})$ more negative/exothermic (than $\Delta_{hyd}H(C\Gamma)$) AND F ⁻ has smaller size (than Cl ⁻) \checkmark Comparison of attraction between ions and water F ⁻ OR smaller sized ion linked to greater attraction to H ₂ O \checkmark	2	ORA IGNORE 'atomic' before radius when comparing size of ions IGNORE charge density IGNORE charge density IGNORE nuclear attraction DO NOT ALLOW 'forms stronger hydrogen bonds with water' OR 'forms stronger van der Waals' forces with water' ALLOW 'forms bonds' for attraction' DO NOT ALLOW F ⁻ greater attraction to H ₂ O if given as larger ion Assume 'F' / 'Fluorine' means 'ions' but DO NOT ALLOW 'F molecules' <u>Examiner's Comments</u> When comparing enthalpy changes candidates need to be aware that descriptions such as 'bigger' or 'smaller' are meaningless as there are often negative signs involved. The correct description required here was that the enthalpy change of hydration of F ⁻ ions would be more negative than that of Cl ⁻ ions. Although some candidates wrote in terms of charge density, it was those candidates who related the smaller size of the F ⁻ ion to the difference in enthalpy change of hydration who received credit and went on to say that this was as a consequence of greater attraction to water molecules.
		Total	10	
5	i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta_{sol}H = -43.3$ (kJ mol ⁻¹) award 4 marks Energy released in J OR kJ =113.42 × 4.18 × 10.5 = 4978 (J) OR 4.978 (kJ) \checkmark Correctly calculates n(H ₂ SO ₄) $\frac{11.28}{98.1} = 0.115$ (mol) \checkmark Δ H value in J OR kJ Answer MUST divide energy by n(H ₂ SO ₄)	4	FULL ANNOTATIONS MUST BE USED Calculator: 4978.0038 DO NOT ALLOW less than 3 SF IGNORE units ALLOW correctly calculated number in J OR kJ Calculator 0.1149847095

5.2.1 Lattice Enthalpy

			(-) $\frac{4978}{0.115}$ OR (-)43286 (J) OR (-) $\frac{4978}{0.115}$ OR (-)43.3 (kJ) √ (Sign ignored and/or more than 3 SF) Correct Δ _{sol} H in kJ AND – sign AND 3 SF = -43.3 (kJ mol ⁻¹) √		ALLOW ECF from $n(H_2SO_4)$ AND/OR Energy Calculator from 4978 and 0.115 = 43286.95652 From unrounded values, = 43292.74581 IGNORE absence of – sign and 3 SF requirement Final mark requires – sign, kJ AND 3 SF NOTE: Use of 100 for $m \rightarrow 4389$ J
		ii	$\frac{0.5}{10.5} \times 100 \times 2 = 9.5\% \checkmark$ One decimal place required	1	ECF available for $\rightarrow -38.2 \text{ kJ mol}^{-1}$ (3 marks)
			Predictions ΔT is less AND $\Delta_{sol}H$ is the same \checkmark Reason for ΔT less (same) energy/heat spread over larger volume (of water) \checkmark $\Delta T = 7^{\circ}C \checkmark$	4	ALLOW heat spread over more water ALLOW 6-8 °C Note: <i>m</i> is ~ 1/3 larger. $q = mc\Delta T$ and so ΔT will be ~ 1/3 smaller
			Reason for Δ_{sol}H same Same energy released per mole of H ₂ SO ₄ √		ALLOW $\Delta_{sol}H$ is for dissolving 1 mol
			Total	9	
6	а		(enthalpy change for) 1 mole of gaseous ions OR 1 mole of hydrated ions / aqueous ions ✓ gaseous ions forming aqueous / hydrated ions ✓	2	 one mole can be stated just once EITHER with gaseous ions OR with aqueous ions, e.g. 1 mole of gaseous ions forms hydrated ions / aqueous ions Gaseous ions form 1 mole of hydrated ions / aqueous ions ALLOW 1 mol for 1 mole IGNORE 'energy released' OR 'energy required'

	Top arrow is shown FROM K ₂ SO ₄ (s) and arrow directions correct. Letter labels correct so last mark is awarded. 4/5 marks *(g) + 50,2*(g) *(x) + 50,2*(g)*(A OR-1763 (2 / X OR-1763 (2 / X OR-1763 (2 / X OR X OR X OR State symbol IF no extra er combined for • No r with • No r com Therefore 3 r provided Examiner's 0 This question aqueous solu Many candida energy cycle species and s such cycles a for species su prepared can all, having sh	$\frac{a) + SO_{4}^{2}(aq)}{(aq) + SO_{4}^{2}(aq)}$ $C OR (2 \square -320)$ $\frac{(aq) + SO_{4}^{2}(aq)}{(aq) + SO_{4}^{2}(aq)}$ s are essential $\frac{a}{2} OR 24$	
			ne state symbols (s) and (g) are guished.	
ii	Δ <i>H</i> (hydration) SO₄ ^{2−} = − 1099 (kJ mol ^{−1}) √	Examiner's (This question aqueous solu 1 Although many the lattice end	Comments a assessed enthalpy changes in itions. hy candidates correctly calculated thalpy, errors were common. A r was use of -320 (instead of 2 × -1419.	
c i	Aqueous particles are more disordered than solid (particles) OR Solid particles are more ordered than aqueous (particles) ✓	1 ALLOW Wh	ALLOW ions LOW molecules / atoms en the state changes from solid disorder increases'	

		For more disordered, ALLOW less ordered /
		more freedom / more ways of arranging
		energy / more random
		For aqueous particles, ALLOW particles in
		solution
		IGNORE dissolved
		Examiner's Comments
		This question assessed enthalpy changes in aqueous solutions.
		In this part, candidates needed to recognise that solid particles are forming aqueous particles with an increase in disorder. Many candidates incorrectly used 'liquid' instead of
		aqueous and others started from gaseous particles, perhaps confusing enthalpy change of solution with hydration.
		Contact TL if solely entropy approach rather than ΔG
 Calculation (2 marks) $\Delta G = 24 - (298 \times 0.225)$ OR $24 - 67.05$ (in kJ) OR $24000 - (298 \times 225)$ OR $24000 - 67050$ (in J) \checkmark Calculation of ΔG (IGNORE UNITS) $\Delta G = -43$ (kJ mol ⁻¹) OR -43000 (J mol ⁻¹) \checkmark Subsumes 1st calculation mark Reason for solubility	3	ALLOW -43.1 OR -43.05 (calculator value) ALLOW 1 calculation mark (IGNORE units) for -67.(026) OR -67026 ECF from 225 instead of 0.225 18.(375) OR +18.375 ECF from 25 instead of 298 ALLOW other ECF from ONE error in 1st step of calc, e.g. incorrect value for ΔH such as -1099 from 3bii \rightarrow -1166.05 TAKE CARE that same units used for ΔH and ΔS
Calculated value of ΔG that is negative AND		NO reason mark from a +ve value of ΔG
		Examiner's Comments
Statement that: ΔG is negative OR $\Delta G < 0$ OR $-43 < 0$ OR $\Delta H - T\Delta S < 0$ OR $T\Delta S > \Delta H \checkmark$		This question assessed enthalpy changes in aqueous solutions.
		The majority of candidates recognised that the Gibbs' equation was required. Usually the correct enthalpy change of +24 kJ mol ⁻¹ was used to obtain a negative value for ΔG . The majority then went on to link the negative value to feasibility for the dissolving process. A

				significant number of candidates used the wrong enthalpy change (or no enthalpy change at all) or mixed units of J and kJ. Answer: $\Delta G = -43$ kJ mol ⁻¹
		Total	12	
7	i	Fe ⁺ (g) + 2I(g) + e ⁻ \checkmark Fe(g) + 2I(g) \checkmark Fe(g) + 2I(g) \checkmark Fe(s) + I ₂ (s) \checkmark Mark each marking point independently	4	Correct species AND state symbols required for each marks ALLOW e for e [−] TAKE CARE: In top left box, e [−] may be in centre of response and more difficult to see than at end. There is only ONE correct response for each line <i>From the gaps in the cycle, there is NO</i> <i>possibility of any ECF</i> Examiner's Comments Many candidates completed the Born-Haber cycle to obtain three out of the four available marks. Strangely, very few candidates showed the correct species in the bottom box for the elements under standard conditions. Almost invariable, iodine was shown incorrectly, usually as l ₂ (g) or 2l(g). The other three boxes were usually correct although sometimes state symbols had been omitted or electrons had been included together with the gaseous ions in the top right box. Candidates are advised to check carefully between stages in the cycle to ensure that all species charges and state symbols are included and accounted for.
	11	 (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) √√ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark 	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed / made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid IGNORE: $Fe^{2+}(g) + 2I^{-}(g) \rightarrow FeI_2(s)$ (Part of cycle)
		DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓

		ALLOW 1 mark for ΔH_f definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark Examiner's Comments The majority of candidates had learnt the definition for lattice enthalpy and scored two marks. When fewer marks were awarded, the more common reasons were for responses in terms of a mole of gaseous ions, or omission of the mole altogether. Occasionally, some weaker candidates confused the definition with that for the enthalpy change of formation and so referred to forming a mole of the ionic compound from its constituent elements. Such responses gained no credit.
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2473 (kJ mol ⁻¹) award 2 marks 	2	IF there is an alternative answer, check to seeif there is any ECF credit possible usingworking below.See list below for marking of answers fromcommon errorsALLOW for 1 mark:+2473wrong sign-2661107 and -295 used instead of2× 107 and -295 used instead of 2×107 and 2×-295 -2366+107 used instead of 2×107 -2768-295-3653wrong sign for 295-2247wrong sign for 295-2247wrong sign for 213-1641wrong sign for 2 × 107-955wrong sign for 750+649wrong sign for 1561-3653wrong sign for 2 × -295
= - 2473 √ (kJ mol ⁻¹)		Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416 Examiner's Comments Most candidates correctly calculated the lattice enthalpy using a correct sequence of enthalpy values. The commonest mistake was the omission of '2' for either the atomisation or ionisation of iodine, leading to answers of

					-2366 or -2661 kJ mol ⁻¹ , or use of incorrect signs. There were more transcription errors seen than in previous session, most notably, -113 shown as -133. Candidates are advised to check carefully that any balancing numbers are linked to the correct enthalpy changes in the cycle and to double check values for possible transcription errors. Answer = -2473 kJ mol ⁻¹
			Total	8	
8	a		$2K^{+}(g) + S^{2-}(g) \checkmark$	3	Mark each marking point independently Correct species AND state symbols required for each mark For S ^{2−} , DO NOT ALLOW S ^{−2} For e [−] , ALLOW e For e [−] only, IGNORE any state symbols added ALLOW k and s It can be very difficult distinguishing K from k; S from s Examiner's Comments Many candidates successfully completed the Born-Haber cycle to obtain all three marks. The species including any ionic charges and state symbols were almost always correct but sometimes one or more state symbols had been omitted. The commonest error was in the number of electrons in the middle stage; some showed two electrons and the electron was more often omitted entirely. Candidates are advised to check carefully between stages in the cycle to ensure that all species charges and state symbols are accounted for and included.
		ï	 (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓ ✓ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark 	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed / made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid IGNORE: $2K^+(g) + S^{2-}(g) \rightarrow K_2S(s)$ (question asks for words)

Note: A definition for enthalpy change of formation will receive no marks		 ALLOW 1 mark (special case) for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) √ Examiner's Comments The majority of candidates had learnt the definition for lattice enthalpy and scored two marks. When fewer marks were awarded, the more common reasons were for responses in terms of a mole of gaseous ions, or omission of the mole altogether. Occasionally some weaker candidates confused the definition with that for the enthalpy change of formation and so referred to forming a mole of the ionic compound from its constituent elements. Such responses gained no credit.
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2116 (kJ mol ⁻¹) award 2 marks -381 - (2 × +89 + 279 + 2 × +419 -200 + 640) √ -381 - 1735 = - 2116 ✓ (kJ mol ⁻¹)	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors ALLOW for 1 mark ONE mistake with sign OR use of 2: -2027 (2 × 89 not used for K) -1697 (2 × 419 not used for K) -2516 (+200 rather than -200 for S 1st electron affinity) (+)2116 (wrong sign) -1354 (+381 instead of -381) (+)1354 (+1735 instead of -1735) -836 (-640 instead of +640) -1558 (-279 instead of +2 x 89) -439 (-2 × 419 instead of +2 x 419) -2120 (rounded to 3SF) For other answers, check for a single transcription error or calculator error which
		could merit 1 mark DO NOT ALLOW any other answers, e.g. -1608 (2 errors: 2 × 89 and 2 × 419 not used for K) -846 (3 errors:) Examiner's Comments Most candidates correctly calculated the lattice enthalpy using a correct sequence of enthalpy values. The commonest mistakes were

		omission of '2' for either the atomisation or ionisation of potassium or use of incorrect signs. Candidates are advised to check carefully that any balancing numbers are linked to the correct enthalpy changes in the cycle. Answer = -s2116 kJ mol ⁻¹
	Lowest melting point KI	FULL ANNOTATIONS MUST BE USEDORA throughout Response must clearly refer to ions for explanation marks2nd and 3rd marking point must be comparative
	RbC/ Highest melting point NaBr Correct order √ Mark 2nd and 3rd marking points independently	DO NOT ALLOW incorrect named particles e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc DO NOT ALLOW responses using nuclear size or attraction
	Attraction and ionic size linked: Greater attraction from smaller ions / closer ions / larger charge density ✓ <i>Comparison needed</i>	DO NOT ALLOW responses linked with loss of electrons IGNORE larger electron density ALLOW smaller sum of radii gives a greater ionic attraction IGNORE NaBr has greater ionic attraction
b		 3 IGNORE NaBr has smallest ionic radius (not focussing on size of each ion) ASSUME bonds broken are ionic unless otherwise stated DO NOT ALLOW incorrect named particles e.g. 'atoms', 'molecules', Na, Cl, Cl₂, 'atomic', etc
	Energy AND attraction / breaking bonds linked: More energy / heat to overcome attraction (between ions) OR	Note: Comparison for energy only (i.e. link between more energy and breaking bonds / overcoming attraction) Examiner's Comments
	More energy / heat to break (ionic) bonds √	This descriptive part caused more problems. Candidates were expected to apply their knowledge and understanding of lattice enthalpies to supplied data. The predicted order of melting points based on the sum of the ionic radii gave the easiest mark, although some showed the order the opposite way round. The explanation proved to be much harder. Candidates were expected to relate

					ionic size with attraction and then to the energy required to overcome the attractive force. Precision in language is always essential here and many candidate spoilt their response by use of incorrect particles. It was very common to see terms such as 'atomic radius, molecules, van der Waals' forces and ionic radius of NaBr. Some candidates simply compared the radii, the skill required for the first marking point.
			Total	10	
9	a		solution : (enthalpy change for) 1 mole of a compound / substance / solid / solute dissolving in water	1	IGNORE 'energy released' OR 'energy required' For dissolving, ALLOW forms aqueous / hydrated ions DO NOT ALLOW dissolving elements IGNORE ionic OR covalent DO NOT ALLOW response that implies formation of 1 mole of aqueous ions
	b	i	$Ca^{2+}(g) + 2CI^{-}(g)$ $V Ca^{2+}(aq) + 2CI^{-}(g)$ $V Ca^{2+}(aq) + 2CI^{-}(aq)$	3	Correct species AND state symbols required for each mark. (mark independently) On middle line, ALLOW Ca ²⁺ (g) + 2C/ ⁻ (aq) (i.e. C/ ⁻ hydrated before Ca ²⁺) On bottom line, ALLOW CaC/ ₂ (aq)
		ii	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = -142 (kJ mol ⁻¹) award 2 marks $\Delta_{sol}H$ (CaCl ₂) = [$-1616 + (2 \times -359)$] - (-2192) OR $-2334 + 2192$ = -142 (kJ mol ⁻¹)	2	 IF there is an alternative answer, check to see if there is any ECF credit possible using the working shown. IF ALL 3 relevant values from the information at the start of Q3 have NOT been used, award zero marks unless one number has a transcription error, where 1 mark can be awarded ECF
		iii	Comparison of size Ca ²⁺ > Mg ²⁺ Comparison of charge Na ⁺ < Mg ²⁺ < Al ³⁺ Comparison of attraction between ions size AND charge linked to greater attraction to H₂O ✓	3	IGNORE comparison of size: Na ⁺ > Mg ²⁺ > Al ³⁺
	с	i	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = -132 (kJ mol ⁻¹) award 4 marks Correctly calculates energy released in J OR kJ	4	FULL ANNOTATIONS MUST BE USED ALLOW calculator value of 6611.1507 down to 3SF value of 6610

1					
			= 50.21 × 4.18 × 31.5 = 6611 (J) OR 6.611 (kJ)		
			Correctly calculates $n(CaCl_2)$ = $\frac{5.56}{111.1}$ = 0.05(00) mol		DO NOT ALLOW fewer than 3 SF
			Correctly calculates ΔH value in J OR kJ In J: = $(-)_{0.0500}^{6611}$ OR $(-)_{132,220}$ (J) OR In kJ: = $(-)_{0.0500}^{6.611}$ OR $(-)_{132.22}$ (kJ)		IGNORE units for this mark, i.e. just ALLOW correctly calculated number in either J or kJ
			(<i>Sign ignored and / or more than</i> 3 <i>SF</i>) Correct Δ _{sol} <i>H</i> in kJ AND sign AND 3SF		ALLOW ECF from <i>n</i> (CaC/ ₂) AND / OR Energy released
			= −132 (kJ mol ^{−1})		IGNORE absence of – sign and 3 SF requirement
					Final mark requires – sign, kJ AND 3 SF
			Temperature change is double / × 2 / 63 °C AND $\Delta_{sol}H$ is the same	<u> </u>	
		ii	Twice the energy produced in the same volume AND ratio of energy produced to mass or number of moles is the same $OR \frac{q}{n}$ is the same	2	ALLOW temperature reached would be 85 °C
			Total	15	
			Lattice enthalpy of $MgCl_2$ is more exothermic than $CaCl_2$		ora throughout
1 0	а		Lattice enthalpy of MgC <i>I</i> ₂ is more exothermic than CaC <i>I</i> ₂ (1) because magnesium ion / Mg ²⁺ is smaller (than calcium ions / Ca ²⁺) OR Mg ²⁺ has a greater charge density (1) therefore the attraction between Mg ²⁺ and C <i>I</i> ⁻ is	3	allow 'charge density' here only allow magnesium / Mg is smaller do not allow Mg ²⁺ has a smaller atomic radius do not allow chlorine ions do not allow Mg has greater attraction allow 'attracts with more force' for greater
-	а		(1) because magnesium ion / Mg ²⁺ is smaller (than calcium ions / Ca ²⁺) OR Mg ²⁺ has a greater charge density (1)	3	allow 'charge density' here only allow magnesium / Mg is smaller do not allow Mg ²⁺ has a smaller atomic radius do not allow chlorine ions do not allow Mg has greater attraction
-	b	i	(1) because magnesium ion / Mg ²⁺ is smaller (than calcium ions / Ca ²⁺) OR Mg ²⁺ has a greater charge density (1) therefore the attraction between Mg ²⁺ and C/ ⁻ is	3	allow 'charge density' here only allow magnesium / Mg is smaller do not allow Mg ²⁺ has a smaller atomic radius do not allow chlorine ions do not allow Mg has greater attraction allow 'attracts with more force' for greater attraction but do not allow 'greater force' (could be

5.2.1 Lattice Enthalpy

	FOUR correct (2) THREE correct (1)		if only one or two correct, award 0 marks.
ii	-642 - (+76 + (2 × 150) + 736 + 1450 + (2 × −349)) (1) -642 - 1864 = -2506 (1) (kJ mol ⁻¹)	2	allow for 1 mark: -2705 (2 × 150 and 2 × 349 not used for C/) -2356 (2 × 150 not used for C/) -2855 (2 × 349 not used for C/) +2506 (wrong sign) do not allow any other answers
	Total	8	